Transient calnexin interaction confers long-term stability on folded K+ channel protein in the ER.

نویسندگان

  • Rajesh Khanna
  • Eun Jeon Lee
  • Diane M Papazian
چکیده

We recently showed that an unglycosylated form of the Shaker potassium channel protein is retained in the endoplasmic reticulum (ER) and degraded by proteasomes in mammalian cells despite apparently normal folding and assembly. These results suggest that channel proteins with a native structure can be substrates for ER-associated degradation. We have now tested this hypothesis using the wild-type Shaker protein. Wild-type Shaker is degraded by cytoplasmic proteasomes when it is trapped in the ER and prevented from interacting with calnexin. Neither condition alone is sufficient to destabilize the protein. Proteasomal degradation of the wild-type protein is abolished when ER mannosidase I trimming of the core glycan is inhibited. Our results indicate that transient interaction with calnexin provides long-term protection from ER-associated degradation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quality control in the secretory pathway: retention of a misfolded viral membrane glycoprotein involves cycling between the ER, intermediate compartment, and Golgi apparatus

Proteins synthesized in the ER are generally transported to the Golgi complex and beyond only when they have reached a fully folded and assembled conformation. To analyze how the selective retention of misfolded proteins works, we monitored the long-term fate of a membrane glycoprotein with a temperature-dependent folding defect, the G protein of tsO45 vesicular stomatitis virus. We used indire...

متن کامل

Model-Driven Understanding of Palmitoylation Dynamics: Regulated Acylation of the Endoplasmic Reticulum Chaperone Calnexin

Cellular functions are largely regulated by reversible post-translational modifications of proteins which act as switches. Amongst these, S-palmitoylation is unique in that it confers hydrophobicity. Due to technical difficulties, the understanding of this modification has lagged behind. To investigate principles underlying dynamics and regulation of palmitoylation, we have here studied a key c...

متن کامل

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

Spike timing dependent plasticity: mechanisms, significance, and controversies

Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...

متن کامل

The subcellular distribution of calnexin is mediated by PACS-2.

Calnexin is an endoplasmic reticulum (ER) lectin that mediates protein folding on the rough ER. Calnexin also interacts with ER calcium pumps that localize to the mitochondria-associated membrane (MAM). Depending on ER homeostasis, varying amounts of calnexin target to the plasma membrane. However, no regulated sorting mechanism is so far known for calnexin. Our results now describe how the int...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 117 Pt 14  شماره 

صفحات  -

تاریخ انتشار 2004